METE433 MATERIALS FOR ORGANIC ELECTRONICS
Course Code: | 5700433 |
METU Credit (Theoretical-Laboratory hours/week): | 3 (3.00 - 0.00) |
ECTS Credit: | 5.0 |
Department: | Metallurgical and Materials Engineering |
Language of Instruction: | English |
Level of Study: | Undergraduate |
Course Coordinator: | Prof.Dr. HÜSNÜ EMRAH ÜNALAN |
Offered Semester: | Fall and Spring Semesters. |
Course Objectives
At the end of this course, the student will learn:
- explain the reason for the (semi)conductivity observed in polymers,
- describe basic operating principles of organic transistors, solar cells and light emitting diodes,
- establish important relationships between structure and performance of devices during fabrication and use.
Course Content
Fundamentals of organic semiconductors and their applications in electronic and photonic devices; materials, manufacturing issues and applications in organic field effect transistors (OTFTs); light emitting diodes (OLEDs); photovoltaic devices (OPVs); memory devices; smart windows.
Course Learning Outcomes
Student, who passed the course satisfactorily will be able to:
- design a system, component, or process to meet desired needs,
- identify, formulate, and solve engineering problems,
- have a knowledge of contemporary issues,
- use the techniques, skills, and modern engineering tools necessary for engineering practice,
- apply and integrate knowledge from each of the four major elements of the field to solve materials and/or process selection and design problems.
Program Outcomes Matrix
Contribution | |||||
# | Program Outcomes | No | Yes | ||
1 | An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics | ✔ | |||
2 | An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors | ✔ | |||
3 | An ability to communicate effectively with a range of audiences | ✔ | |||
4 | An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts | ✔ | |||
5 | An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives | ✔ | |||
6 | An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions | ✔ | |||
7 | An ability to acquire and apply new knowledge as needed, using appropriate learning strategies | ✔ | |||
8 | Knowledge of the scientific and engineering principles underlying the four major elements of the field; structure, properties, processing and performance related to material systems | ✔ | |||
9 | An ability to apply and integrate knowledge from each of the four major elements of the field to solve materials and/or process selection and design problems | ✔ |