IE555 NONLINEAR OPTIMIZATION
Course Code: | 5680555 |
METU Credit (Theoretical-Laboratory hours/week): | 3 (3.00 - 0.00) |
ECTS Credit: | 8.0 |
Department: | Industrial Engineering |
Language of Instruction: | English |
Level of Study: | Graduate |
Course Coordinator: | Assoc.Prof.Dr. MUSTAFA KEMAL TURAL |
Offered Semester: | Once in several years. |
Course Objectives
1. understand the basic theory of nonlinear programming
2. learn important nonlinear programming algorithms
3. gain an appropriate background to carry out research involving nonlinear programming applications
4. recognize convex optimization problems and solve them using an optimization solver
5. understand second-order cone programming
Course Content
Review of convex sets and functions. Local and global optima. Basic methods of constrained optimization. Lagragian duality.(R)
Course Learning Outcomes
- develop nonlinear programming models
- solve unconstrained nonlinear programming problems using optimality conditions
- solve constrained nonlinear programming problems using optimality conditions
- use gradient methods to solve nonlinear programming problems
- identify convex optimization problems
- solve convex optimization problems using a software and interpret the results
- identify second order cone programming problems
Program Outcomes Matrix
Contribution | |||||
# | Program Outcomes | No | Yes | ||
1 | Specialize with advanced knowledge in selected areas of Industrial Engineering; such as Production and Operations Management, Supply Chain Management, Business Analytics and Information Systems, Decision Sciences and Operational Research, Quality Management, Human Factors and Ergonomics, and Strategy and Industrial Economics. | ✔ | |||
2 | Have advanced ability to formulate and solve industrial engineering problems. | ✔ | |||
3 | Be able to systematically acquire new scientific knowledge to design and improve socio-technical systems. | ✔ | |||
4 | Be able to conduct scientific research in industrial engineering. | ✔ | |||
5 | Be able to apply critical reasoning in their professional careers. | ✔ | |||
6 | Appreciate the academics ethics. | ✔ |