CHE461 POLYMER ADDITIVES, BLENDS & COMPOSITES
Course Code: | 5630461 |
METU Credit (Theoretical-Laboratory hours/week): | 3 (3.00 - 0.00) |
ECTS Credit: | 5.0 |
Department: | Chemical Engineering |
Language of Instruction: | English |
Level of Study: | Undergraduate |
Course Coordinator: | Assoc.Prof.Dr. ERHAN BAT |
Offered Semester: | Fall Semesters. |
Course Objectives
At the end of this course, the students will learn:
- Types and functions of additives used in polymers
- Thermodynamic principles of polymer/polymer miscibility
- Types, properties, and characterization of blends and composites
Course Content
Additives for processing, surface and optical property modification, fire retardants, UV protecting agents, blowing agents. Principles of blending and compatibilization. Thermodynamics, rheology and morphology of polymer blends. Principles of composites, interfaces, geometrical aspects, elastic properties. Introduction to laminate theory. Short fiber reinforced plastics. Processing of composites.
Course Learning Outcomes
At the end of the course, the students will be able to:
- Define additives and their roles in polymers
- Understand the factors affecting polymer/polymer miscibility
- Identify appropriate tools for characterization of polymer blends and composites
Program Outcomes Matrix
Contribution | |||||
# | Program Outcomes | No | Yes | ||
1 | An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics | ✔ | |||
2 | An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors | ✔ | |||
3 | An ability to communicate effectively with a range of audiences | ✔ | |||
4 | An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts | ✔ | |||
5 | An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives | ✔ | |||
6 | An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions | ✔ | |||
7 | An ability to acquire and apply new knowledge as needed, using appropriate learning strategies | ✔ |