PHYS486 STRING THEORY II
Course Code: | 2300486 |
METU Credit (Theoretical-Laboratory hours/week): | 3 (3.00 - 0.00) |
ECTS Credit: | 5.0 |
Department: | Physics |
Language of Instruction: | English |
Level of Study: | Undergraduate |
Course Coordinator: | |
Offered Semester: | Spring Semesters. |
Course Objectives
Students will acquire the basic knowledge of
- D-branes and their properties
- Strings in the presence of D-branes and their properties
- T-duality of closed and open strings
- Basic aspects of superstrings
Students will gain further insights to some of the reasons why the string theory is viewed as one of the leading theories in the efforts of explaining, in a unified manner, the fundamental interactions in nature.
Course Content
D-branes and gauge fields, string charge and D-branes charges, T-duality of closed and open strings on D-branes, non-linear and Born-Infeld electrodynamics, introduction to superstrings
Course Learning Outcomes
Student, who passed the course satisfactorily will be able to:
- describe and use the basic notions of quantized open and closed strings
- understand and use the basic properties of D-branes
- comprehend the notion of String charge
- comprehend and make use of the notion of T-duality of both closed and open strings
- understand the properties of electromagnetic fields on D- branes and their consequences
- describe the basic proposals for the uses of D-branes in Particle Physics
- state elementary features of the superstring theory
Program Outcomes Matrix
Level of Contribution | |||||
# | Program Outcomes | 0 | 1 | 2 | 3 |
1 | Can understand, model and analyze the fundamental physical processes of nature. | ✔ | |||
2 | Can suggest mathematical models to problems they face and solve them by various (approximate/analytical/numerical) approaches. | ✔ | |||
3 | Can use basic measurement devices; can choose and apply the best measurement technique. | ✔ | |||
4 | Can adequately record their observations, e.g., in a lab book. | ✔ | |||
5 | Can design and carry out experiments. | ✔ | |||
6 | Can access scientific information sources. | ✔ | |||
7 | Can critically analyze and contribute to scientific information. | ✔ | |||
8 | Can present scientific information clearly. | ✔ | |||
9 | Can analyze systems that contain probabilistic parts; can do error analysis. | ✔ | |||
10 | Has the basic programming skills; can solve a simple physical problem or can simulate one with an appropriate language they choose. | ✔ | |||
11 | Can actively and skillfully conceptualize, apply, analyze, synthesize and evaluate information. | ✔ | |||
12 | Can produce new ideas and products by using their background in physics. | ✔ | |||
13 | Can systematically design, evaluate, and implement a strategy to respond to an existing problem. | ✔ | |||
14 | Is effective in oral and written communication skills by using both Turkish and English languages. | ✔ | |||
15 | Can do leadership and take initiative. | ✔ | |||
16 | Tries to find physics based solutions to the problems of the world that we live in. | ✔ | |||
17 | Obeys the ethical rules in the workplace and the society and ascertains that they are obeyed by others. | ✔ | |||
18 | Can use the digital communication and computation tools in the most efficient and effective way. | ✔ | |||
19 | Can effectively use the knowledge and skills they gained in physics, in observing, analyzing, modeling and solving other societal problems. | ✔ |
0: No Contribution 1: Little Contribution 2: Partial Contribution 3: Full Contribution