MATH320 SET THEORY

Course Code:2360320
METU Credit (Theoretical-Laboratory hours/week):3 (3.00 - 0.00)
ECTS Credit:6.0
Department:Mathematics
Language of Instruction:English
Level of Study:Undergraduate
Course Coordinator:Prof.Dr. SÜLEYMAN ÖNAL
Offered Semester:Fall Semesters.

Course Objectives

This is an introductory course to axiomatic set theory. We shall learn the axiomatic system ZFC, the Zermelo-Fraenkel set theory with Choice. The main objectives of this course are

  • to understand how ZFC provides a foundation for (virtually all) mathematics,
  • to learn about some set-theoretic techniques that are frequently used in mathematics,
  • to learn about set theory as a field of mathematics on its own.

Course Content

Language and axioms of set theory. Ordered pairs, relations and functions. Order relation and well ordered sets. Ordinal numbers, transfinite induction, arithmetic of ordinal numbers. Cardinality and arithmetic of cardinal numbers. Axiom of choice, generalized continuum hypothesis.


Course Learning Outcomes


Program Outcomes Matrix

Level of Contribution
#Program Outcomes0123
1Acquires mathematical thinking skills (problem solving, generating ways of thinking, forming correspondence, generalizing etc.) and can use them in related fields.
2Can produce innovative thoughts and products.
3Can design mathematics related problems, devise solution methods and apply them when appropriate.
4Has a comprehension of mathematical symbols, concepts together with the interactions among them and can express his/her solutions similarly.
5Has a command of Turkish and English languages so that he/she can actively communicate (read, write, listen and speak).
6Contributes to solving global, environmental and social problems either individually or as being part of a social group.
7Respects ethical values and rules; applies them in professional and social issues.
8Can work cooperatively in a team and also individually.
9Is responsive to life-long learning, improving his/her skills and abilities
10Comprehends necessity of knowledge, can define it and acquires it; uses knowledge effectively and shares it with others

0: No Contribution 1: Little Contribution 2: Partial Contribution 3: Full Contribution