STAT565 DECISION THEORY AND BAYESIAN ANALYSIS

Course Code:2460565
METU Credit (Theoretical-Laboratory hours/week):3 (3.00 - 0.00)
ECTS Credit:8.0
Department:Statistics
Language of Instruction:English
Level of Study:Graduate
Course Coordinator:Prof.Dr. VİLDA PURUTÇUOĞLU
Offered Semester:Fall or Spring Semesters.

Course Objectives

The course aims to give the fundamental concepts in  Bayesian analysis, discuss the philosophy behind the Bayesian inference, enable the participants with skills in in Bayesian modeling, Bayesian graphical modeling and Bayesian decision analysis. 


Course Content

Introduction to decision making. Subjective and frequentist probability. Bayes theorem and Bayesian decision theory. Advantages of using a Bayesian approach. Likelihood principle, prior and posterior distributions, conjugate families. Inference as a statistical decision problem. Bayesian point estimation, Tests and confidence regions, model choice, invariance, equivariant estimators, hierarchical and empirical Bayes extensions, robustness and sensitivity, utility and loss, sequential experiments, Markov Chain Monte Carlo Methods, Metropolis-Hastings Algorithm, Gibbs Sampling, The EM Algorithm.


Course Learning Outcomes

The students learn the major differences between the frequentist and bayesian approaches and the fundamental inference methods in bayesian framework. Furthermore, they learn iterative Monte Carlo algorithms which are based on the bayes theoem. 


Program Outcomes Matrix

Level of Contribution
#Program Outcomes0123
1Ability for converting theoretical, methodological, and computational statistical knowledge into analytical solutions in researches requiring statistical analyses.
2Ability for specifiying problems in real life situations bearing uncertainty, forming hypotheses, modeling, application, and interpreting the results.
3Ability for using current technology, computer softwares for statistical applications, computer programming for specific problems when necessary, writing computer codes for speeding up statistical calculations, organizing and cleaning databases, and preparing them for statistical analyses, and data mining.
4Ability for taking part in intra/inter disciplinary team work, efficient use of time, taking responsibility as a team leader, and entrepreneurship.
5Ability for taking responsibility in solitary work and producing creative solutions.
6Ability for keeping up-to-date with current advancements in statistical sciences, doing research, being open-minded, and adopting critical thinking.
7Ability for effective communication both in Turkish and English in specification of statistical problems, analyes, and interpretation of findings.
8Ability for using the knowledge in the field of expertise for the welfare of the society.
9Ability for suggesting the researchers in a comprehensible way the appropriate statistical methods for problems in fields that use statistics such as economics, finance, industrial engineering, genetics, and medicine and apply if needed.
10Ability for catalyzing discussions and presentations, public speaking, making presentations, communicating topics of expertise to the audiance in a comprehensible way.

0: No Contribution 1: Little Contribution 2: Partial Contribution 3: Full Contribution