PHYS493 SPECIAL FUNCTIONS FOR PHYSICISTS
Course Code: | 2300493 |
METU Credit (Theoretical-Laboratory hours/week): | 3 (3.00 - 0.00) |
ECTS Credit: | 5.0 |
Department: | Physics |
Language of Instruction: | English |
Level of Study: | Undergraduate |
Course Coordinator: | Prof.Dr. BAHTİYAR ÖZGÜR SARIOĞLU |
Offered Semester: | Fall Semesters. |
Course Objectives
One often needs to use special functions to solve a number of ordinary and partial differential equations that frequently show up in mathematical physics. A deeper understanding of these special functions and their properties is helpful in appreciating physical concepts and underlying principles. This course should be of value to students who are especially craving for a deeper and more satisfactory comprehension of advanced quantum mechanics and electromagnetism.
Course Content
Differential equations of physics and the method of separation of variables; Legendre polynomials; associated Legendre polynomials; Laguerre polynomials; Hermite polynomials; Bessel functions; Gauss hypergeometric functions; Sturm-Liouville theory.
Course Learning Outcomes
Students who complete this course successfully have a better grasp of many conceptual and technical issues especially in advanced quantum mechanics and electromagnetism, and are much more comfortable in solving mathematical physics problems.
Program Outcomes Matrix
Level of Contribution | |||||
# | Program Outcomes | 0 | 1 | 2 | 3 |
1 | Can understand, model and analyze the fundamental physical processes of nature. | ✔ | |||
2 | Can suggest mathematical models to problems they face and solve them by various (approximate/analytical/numerical) approaches. | ✔ | |||
3 | Can use basic measurement devices; can choose and apply the best measurement technique. | ✔ | |||
4 | Can adequately record their observations, e.g., in a lab book. | ✔ | |||
5 | Can design and carry out experiments. | ✔ | |||
6 | Can access scientific information sources. | ✔ | |||
7 | Can critically analyze and contribute to scientific information. | ✔ | |||
8 | Can present scientific information clearly. | ✔ | |||
9 | Can analyze systems that contain probabilistic parts; can do error analysis. | ✔ | |||
10 | Has the basic programming skills; can solve a simple physical problem or can simulate one with an appropriate language they choose. | ✔ | |||
11 | Can actively and skillfully conceptualize, apply, analyze, synthesize and evaluate information. | ✔ | |||
12 | Can produce new ideas and products by using their background in physics. | ✔ | |||
13 | Can systematically design, evaluate, and implement a strategy to respond to an existing problem. | ✔ | |||
14 | Is effective in oral and written communication skills by using both Turkish and English languages. | ✔ | |||
15 | Can do leadership and take initiative. | ✔ | |||
16 | Tries to find physics based solutions to the problems of the world that we live in. | ✔ | |||
17 | Obeys the ethical rules in the workplace and the society and ascertains that they are obeyed by others. | ✔ | |||
18 | Can use the digital communication and computation tools in the most efficient and effective way. | ✔ | |||
19 | Can effectively use the knowledge and skills they gained in physics, in observing, analyzing, modeling and solving other societal problems. | ✔ |
0: No Contribution 1: Little Contribution 2: Partial Contribution 3: Full Contribution