PHYS428 INTRODUC. TO MAGNETOHYDRODYNAMICS
Course Code: | 2300428 |
METU Credit (Theoretical-Laboratory hours/week): | 3 (3.00 - 0.00) |
ECTS Credit: | 5.0 |
Department: | Physics |
Language of Instruction: | English |
Level of Study: | Undergraduate |
Course Coordinator: | Assoc.Prof.Dr. İLKER ÜMİT UZUN KAYMAK |
Offered Semester: | Spring Semesters. |
Course Objectives
Introduction to Magnetohydrodynamics (MHD) course has been designed for students who are familiar with basics of electromagnetic theory and vector calculus. As the majority of undergraduate courses do not include fluid mechanics no prior knowledge of the subject is assumed.
MHD is essentially an extension of hydrodynamics to electrodynamics. This course is intended to serve as an introductory lectures for undergraduate and graduate students in physics, applied mathematics and engineering. This course covers definition of plasma, MHD basis, one and two fluid eqautions, energyu equation, Landau Damping and MHD waves.
Course Content
Ideal MHD equations; single and two fluid equations; equilibrium and stability; equations of kinetic theory; derivation of fluid equations; Landau damping; nonlinear plasma physics; shock waves; parametric instabilities.
Course Learning Outcomes
After completing the Introduction to MHD course, the student should be able to:
- describe the MHD basis,
- describe the derivation of fluid equations, energy equation
- describe electromagnetic fields in the energy and momentum fluxes
- explain two fluid equations
- explain Landau damping
- explain MHD waves
Program Outcomes Matrix
Level of Contribution | |||||
# | Program Outcomes | 0 | 1 | 2 | 3 |
1 | Can understand, model and analyze the fundamental physical processes of nature. | ✔ | |||
2 | Can suggest mathematical models to problems they face and solve them by various (approximate/analytical/numerical) approaches. | ✔ | |||
3 | Can use basic measurement devices; can choose and apply the best measurement technique. | ✔ | |||
4 | Can adequately record their observations, e.g., in a lab book. | ✔ | |||
5 | Can design and carry out experiments. | ✔ | |||
6 | Can access scientific information sources. | ✔ | |||
7 | Can critically analyze and contribute to scientific information. | ✔ | |||
8 | Can present scientific information clearly. | ✔ | |||
9 | Can analyze systems that contain probabilistic parts; can do error analysis. | ✔ | |||
10 | Has the basic programming skills; can solve a simple physical problem or can simulate one with an appropriate language they choose. | ✔ | |||
11 | Can actively and skillfully conceptualize, apply, analyze, synthesize and evaluate information. | ✔ | |||
12 | Can produce new ideas and products by using their background in physics. | ✔ | |||
13 | Can systematically design, evaluate, and implement a strategy to respond to an existing problem. | ✔ | |||
14 | Is effective in oral and written communication skills by using both Turkish and English languages. | ✔ | |||
15 | Can do leadership and take initiative. | ✔ | |||
16 | Tries to find physics based solutions to the problems of the world that we live in. | ✔ | |||
17 | Obeys the ethical rules in the workplace and the society and ascertains that they are obeyed by others. | ✔ | |||
18 | Can use the digital communication and computation tools in the most efficient and effective way. | ✔ | |||
19 | Can effectively use the knowledge and skills they gained in physics, in observing, analyzing, modeling and solving other societal problems. | ✔ |
0: No Contribution 1: Little Contribution 2: Partial Contribution 3: Full Contribution