MECH421 STEAM GENERATOR AND HEAT EXCHANGER DESIGN
Course Code: | 3650421 |
METU Credit (Theoretical-Laboratory hours/week): | 3 (3.00 - 0.00) |
ECTS Credit: | 5.0 |
Department: | Mechanical Engineering |
Language of Instruction: | English |
Level of Study: | Undergraduate |
Course Coordinator: | |
Offered Semester: | Fall or Spring Semesters. |
Course Objectives
At the end of this course, the student will learn:
- common heat exchanger types, their advantages, disadvantages and their analysis;
- to select appropriate correlations in their analysis;
- design of common types of heat exchangers.
Course Content
Classification of steam generators. Water tube and fire tube boilers. Fuels and combustion. Thermal analysis of furnaces, superheater, economizer, air-preheater. Cooling towers. Description and calculation of different types of heat exchangers, condenser types, shell-and-tube, mixing-type, compact heat exchangers. Thermal stress. Problems of heat exchangers. Water purification.
Course Learning Outcomes
Students who complete this course successfully will be able to:
- list common heat exchanger types, their advantages and limitations;
- select appropriate single and multiphase heat transfer and friction coefficient correlations in heat exchanger problems;
- analyze rating and sizing problems in heat exchanger design;
- incorporate fouling and extended surfaces in calculations;
- design of common types of heat exchangers, such as shell-and-tube, gasketed plate and compact heat exchangers for their use in innovative applications
Program Outcomes Matrix
Level of Contribution | |||||
# | Program Outcomes | 0 | 1 | 2 | 3 |
1 | Ability to establish the relationship between mathematics, basic sciences and engineering sciences with engineering applications | ✔ | |||
2 | Ability to find and interpret information | ✔ | |||
3 | Ability to follow the literature and technology related to his/her topic of interest | ✔ | |||
4 | Recognition of the need to keep oneself up to date in his/her profession | ✔ | |||
5 | Possession of written and oral communication skills | ✔ | |||
6 | Ability to conduct team work (within the discipline, inter-disciplinary, multi-disciplinary) | ✔ | |||
7 | Ability to produce original solutions | ✔ | |||
8 | Use of scientific methodology in approaching and producing solutions to engineering problems and needs | ✔ | |||
9 | Openness to all that is new | ✔ | |||
10 | Ability to conduct experiments | ✔ | |||
11 | Ability to do engineering design | ✔ | |||
12 | Awareness of engineering ethics, knowledge and adoption of its fundamental elements | ✔ | |||
13 | Ability to take societal, environmental and economic considerations into account in professional activities | ✔ | |||
14 | Possession of pioneering and leadership characteristics in areas related to the profession | ✔ |
0: No Contribution 1: Little Contribution 2: Partial Contribution 3: Full Contribution