EE381 SYSTEMS AND CONTROL

Course Code:5670381
METU Credit (Theoretical-Laboratory hours/week):3 (3.00 - 0.00)
ECTS Credit:5.0
Department:Electrical and Electronics Engineering
Language of Instruction:English
Level of Study:Undergraduate
Course Coordinator:Prof.Dr. UMUT ORGUNER
Offered Semester:Fall Semesters.

Course Objectives

This course aims to reinforce systems and mathematical modeling concepts; to develop a solid understanding of stability and feedback notions; and to expose students to feedback controller design for linear systems.


Course Content

Modeling dynamic systems in engineering, industry and economics. Time domain analysis. Controllability and observability. Fourier series, Fourier and Laplace transforms, transfer function. Relationship between time and frequency domain representations.Offered to non-EE students only.


Course Learning Outcomes

1. Students will be able to comprehend mathematical modeling and systems concepts

Specific outcomes of instruction

a-k

- Understand the relationship between a physical system and its mathematical model.

- Write the differential equations describing the behavior of simple mechanical and electrical systems.

- Find the transfer function representation of simple mechanical and electrical systems.

- Find the state-space representation of simple mechanical and electrical systems.

- Understand the relationships between different system representations for a single system.

2. Students will be able to understand the relationship between the response of a system and its mathematical model.

Specific outcomes of instruction

a-k

- Learn the typical input and response types used to characterize control systems

- Understand the behavior of first, second and higher order systems for standard

- Learn important performance measures used to characterize control systems

- Understand the relationship between the parameters of the systems and the transient response of the systems

- Understand the relationship between the parameters of the systems and steady-state response of the systems

3. Students will be able to understand the concepts of feedback and stability and make stability analysis for feedback systems using different analysis tools.

Specific outcomes of instruction

a-k

- Understand the definition and importance of stability for feedback systems

- Understand the relationship between the stability and the poles of the closed loop system.

- Understand the concept of relative stability using both polar plots and Bode plots.

- Make stability analysis for feedback systems using Routh Hurwitz Criterion.

- Make stability analysis for feedback systems using Root-Locus Method.

Specific outcomes of instruction

a-k

- Learn about and design PID controllers for simple feedback systems to satisfy design requirements.

5. Students will be able to comprehend the concept of basic state-space analysis and design.

Specific outcomes of instruction

a-k

- Learn about important state-space realization types that can be obtained from transfer functions.

- Comprehend the concepts of controllability and observability for state-space representations.

- Understand the concept of state feedback and design a state feedback rule to satisfy design requirements.

- Understand the concept of a state observer and design an observer to satisfy the design requirements.


Program Outcomes Matrix

Contribution
#Program OutcomesNoYes
1An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3An ability to communicate effectively with a range of audiences
4An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
5An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7An ability to acquire and apply new knowledge as needed, using appropriate learning strategies